셀프 강화학습 재수강
1. Introduction of Reinforcement Learning
2. Basic concept of Reinforcement Learning
3. Markov decision process
4. Dynamic programming
5. Monte Carlo
6. Temporal difference
7. MC Control
8. TD Control SARSA
9. TD Control Q-learning
10. Function Approximation
11. Policy gradient - REINFORCE
12. Policy gradient - Actor Critic
13. DQN
14. DDQN
15. TRPO
16. PPO
17. A3C
18. TD3
19. SAC
20. Model-based RL